Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Victor B. Rybakov, ${ }^{\text {a }}$ * Nikolai V. Alekseev, ${ }^{\text {b }}$ Vladimir D. Sheludyakov, ${ }^{\text {b }}$ Yury A. Ivanov, ${ }^{\text {c }}$ Alexei Yu. Frolov ${ }^{c}$ and Leonid A. Aslanov ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation, ${ }^{\mathbf{b}}$ State Research Center of the Russian Federation, State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 111123 Moscow, Russian Federation, and ${ }^{\mathrm{c}}$ Fund for Development and Interconnection of Culture, Science, Education, Religions, Societies and Countries, 103050 Moscow, Russian Federation

Correspondence e-mail:
rybakov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.053$
$w R$ factor $=0.142$
Data-to-parameter ratio $=17.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

6-Ethoxy-1,2,3,4-tetrahydro-2,2,4trimethylquinoline

As part of structural studies of 6-ethoxy-2,3,4-tetrahydro-2,2,4-trimethylquinoline derivatives, the crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$, has been investigated. The conformation of the tetrahydropyridine ring differs markedly from that of similar compounds.

Comment

The crystal and molecular structures of hydrogenated quinolines have been studied previously (Shchegoleva et al., 1980; Obodovskaya et al., 1985, 1990; Davydov et al., 1994). Here, we report the crystal structure of the title compound, (I) (Fig. 1).

(I)

The bicyclic system in the molecule of (I) consists of a planar benzene ring and a non-planar tetrahydropyridine ring. The r.m.s. deviation of the benzene atoms from their mean plane is about $0.006 \AA$. Atoms N1, C4 and O7, bonded to C atoms of the benzene ring, lie in the same plane. Atoms C71 and C72 are also close to that plane, deviating from it by 0.063 (2) and 0.086 (3) A , respectively.

The $\mathrm{C}-\mathrm{C}$ bond lengths in the benzene ring (Table 1) are the same as in other substituted benzene molecules (Cambridge Structural Database, version of November 2003; Allen, 2002). The benzene ring is linked via the common C5C10 bond to the non-planar tetrahydropyridine ring, which has a distorted half-chair conformation. Atoms C2 and C3 are located on opposite sides of the benzene ring plane. The torsion angles $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$ and $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 5$ are 15.4 (2) and $21.5(2)^{\circ}$, respectively, as a result of $A^{1,2}$-allyl tension, which exists in cyclohexene rings (Johanson, 1968).

The bond lengths and angles in (I) are normal and agree well with those in 6-acetoxy-1,2,3,4-tetrahydro-2,2,4-trimethylquinoline (Obodovskaya et al., 1985).

Experimental

The title compound was prepared from crude 6 -ethoxy-2,2,4-tri-methyl-1,2-dihydroquinoline by hydrogenation in an autoclave in the presence of a Raney catalyst. At the end of the hydrogenation stage, the reaction mixture was cooled, filtered and distilled in vacuo. Rosecoloured crystals were obtained after storing for 1 d in the cold [273 (5) K]. After recrystallization, firstly from propan-2-ol and then from hexane, colourless crystals of (I) were obtained (m.p. 311-

312 K). Analysis found: C 76.62, H 9.61, N 6.32, O 7.30%; calculated: C 76.67, H 9.65, N 6.39 , O 7.29%. The composition of (I) was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, measured on a Bruker AM-360 spectrometer ($360 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta$, p.p.m): $1.09\left(s, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right)$, $1.14\left(s, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 1.21\left(m, 4 \mathrm{H}, \mathrm{H} 3+4-\mathrm{CH}_{3}\right), 1.25\left(t, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66$ $\left(d d, 1 \mathrm{H}, \mathrm{H}_{3}\right), 2.77\left(m, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.86\left(q, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.9\left(b r, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, $6.36\left(d, 1 \mathrm{H}, \mathrm{H}_{8}\right), 6.46\left(d d, 1 \mathrm{H}, \mathrm{H}_{7}\right), 6.64\left(d, 1 \mathrm{H}, \mathrm{H}_{5}\right)$.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$
$M_{r}=219.32$
Monoclinic, $P 2_{1} / c$
$a=13.196(4) \AA$
$b=8.865(6) \AA$
$c=11.330(11) \AA$
$\beta=90.77(6)^{\circ}$
$V=1325.3(16) \AA^{3}$
$Z=4$

Data collection
Enraf-Nonius CAD-4 diffractometer
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: none 5533 measured reflections 2717 independent reflections 1805 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.143$
$S=0.99$
2717 reflections
153 parameters
$D_{x}=1.099 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation

Cell parameters from 25
reflections
$\theta=30-35^{\circ}$
$\mu=0.53 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.3 \times 0.3 \times 0.3 \mathrm{~mm}$
$\theta_{\text {max }}=74.9^{\circ}$
$h=-16 \rightarrow 16$
$k=-11 \rightarrow 11$
$l=0 \rightarrow 14$
1 standard reflection frequency: 60 min intensity decay: 3%

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0647 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.12 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N1-C10	1.399 (2)	C5-C6	1.388 (2)
N1-C2	1.469 (2)	C5-C10	1.399 (2)
N1-H1	0.80 (2)	C6-C7	1.390 (2)
C2-C3	1.514 (2)	C7-C8	1.375 (2)
C2-C22	1.521 (3)	C7-O7	1.377 (2)
C2-C21	1.537 (2)	O7-C71	1.413 (2)
C3-C4	1.522 (3)	C71-C72	1.489 (3)
C4-C41	1.514 (3)	C8-C9	1.386 (2)
C4-C5	1.523 (2)	C9-C10	1.398 (2)
C10-N1-C2	118.34 (14)	C6-C5-C4	120.72 (14)
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{H} 1$	121.7 (15)	C10-C5-C4	120.78 (14)
C2-N1-H1	116.8 (16)	C5-C6-C7	122.27 (14)
N1-C2-C3	106.40 (14)	C8-C7-O7	125.28 (14)
N1-C2-C22	107.72 (15)	C8-C7-C6	119.27 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 22$	111.22 (16)	O7-C7-C6	115.44 (14)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 21$	111.04 (15)	C7-O7-C71	118.20 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 21$	110.84 (14)	O7-C71-C72	108.27 (17)
C22-C2-C21	109.55 (16)	C7-C8-C9	119.32 (14)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	114.33 (14)	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	121.93 (14)
C41-C4-C3	111.30 (17)	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 1$	119.30 (14)
C41-C4-C5	113.67 (15)	C9-C10-C5	118.71 (14)
C3-C4-C5	109.93 (14)	N1-C10-C5	121.89 (14)
C6-C5-C10	118.49 (14)		

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.

The H atom bonded to N was located in a difference Fourier map and refined isotropically. H atoms bonded to C atoms were placed in calculated positions and refined as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C})$. No hydrogen bonds are found in this structure.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for the use of the Cambridge Structural Database (project No. 02-07-90322).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Davydov, V. V., Sokol, V. I., Balebanova, E. V., Ekivina, N. I., Ivanov, Yu. A., Porai-Koshits, M. A. \& Zaitsev, B. E. (1994). Koord. Khim. 20, 311-317. (In Russian.)
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Johanson, F. (1968). Chem. Rev. 68, 375-408.
Obodovskaya, A. E., Starikova, Z. A., Ivanov, Yu. A. \& Pokrovskaya, I. E. (1985). Zh. Strukt. Khim. 26, 93-95. (In Russian.)

Obodovskaya, A. E., Starikova, Z. A., Shikhaliev, Kh. S., Ivanov, Yu. A., Shmyreva, Zh. V. \& Pokrovskaya, I. E. (1990). Kristallografiya, 35, 15651568. (In Russian.)

Shchegoleva, T. M., Ivanov, Yu. A., Starikova, Z. A., Pokrovskaya, I. E. \& Trunov, V. K. (1980). Kristallografiya, 25, 749-754. (In Russian.)
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2004 International Union of Crystallography

